Prof. Keith Horne

Position:
Professor
Research Theme:
Astronomy
Institution:
St. Andrews
Email address:
kdh1@st-andrews.ac.uk
Website:
http://star-www.st-and.ac.uk/~kdh1/
Telephone number:
+44 (0)1334 463322
Address:
School of Physics & Astronomy, Physical Science Building, North Haugh, St Andrews, KY16 9SS, United Kingdom

Research interests

I have wide-ranging interests in many areas of astrophysics ranging from extrasolar planets to black hole accretion in galaxies to alternative gravity theories. My main expertise is in the interpretation of astrophysical observations, in particular developing novel data analysis and astro-tomography methods that extend the reach and resolution of observational data.

In the 1980's I worked mainly on accretion in compact binary systems, developing eclipse mapping and doppler tomography methods to make micro-arcsecond maps of the temperature profiles and emission-line distributions on the faces of the accretion disks in cataclysmic variables. For this I developed the optimal extraction algorithm for CCD spectroscopy, and maximum entropy reconstruction methods to convert the observed eclipse lightcurves and orbital phase variations of the emission-line profiles into accretion disk maps. (I developed similar methods to map x-ray coronae of rotating stars, and to make albedo maps of Pluto and Charon from mutual event lightcurves.)

In the 1990's I worked also on echo mapping of accretion flows into the supermassive black holes of active galactic nuclei, using light travel time delays to resolve structures 1-100 light days from the black hole, including the accretion disk and the broad emission-line regions. I adapted the maximum entropy methods to recover delay dsitributions and 2-dimensional velocity-delay maps of various emission-line regions, revealing their stratified ionisation structure and some aspects of the gas kinematics (virial flows) from which black hole masses and accretion rates are be measured.

I worked on science teams developing concepts and proposals for two space missions - NASA/Kronos and ESA/Eddington, neither of which was selected for flight.

In the 2000's I began work on detection of extrasolar planets by two methods. For hot planets, small wide-angle ground-based surveys (WASP, QES) have detected over 100 hot Jupiters transiting their host stars.  For cool planets, monitoring the lightcurves of microlensing events (PLANET, RoboNet) to detect occasional brief lightcurve anomalies that reveal the mass and orbit size of planets outside the snow line and down to just below the Earth mass. I recently proposed to repurpose the disabled Kepler satellite to measure microlens parallaxes, pending NASA approval to start in 2014.

I currently work mainly on two key projects exploiting our new network of nine 1m robotic telescopes (LCOGT/SUPA). The first monitors lightcurves of Galactic Bulge microlensing events to detect and characterise cool planets, and to characterise the mass and orbit size distribution of cool exoplanets outside the snow line and down to the mass of the Earth. The second monitors lightcurves of quasars, interpreting variations in terms of time-delayed reprocessing to measure quasar accretion disk T(R) profiles, black hole masses, accretion rates, and luminosity distances. My goal is to secure useful luminosity distances for reverberating quasar accretion disks out to redshift 3, to check and extend cosmological constraints from supernovae.

On a more speculative front, I am working to understand and develop astrophysical tests of Conformal Gravity, and to study Dirac solitons - localised quantum systems bound by their own self gravity - in both General Relativity and Conformal Gravity. My goals are to discover a simple alternative explanation for Dark Matter and Dark Energy phenomena, and to model elementary particles with fewer input parameters than the Standard Model.

Teaching

I currently teach a course in Advanced (Astronomical) Data Analysis to 5th year St Andrews undergrads and 1st year PhD students across the SUPA network (St Andrews, Edinburgh, Aberdeen), as well as supervising undergraduate and postgraduate research students in Astrophysics and Theoretical Physics.

In past years I have taught undergraduate courses at 1st year (Extragalactic Astronomy and Cosmology, Stars and Elementary Astrophysics), 2nd year (Galactic Astronomy, Chemical Evolution), 3rd year (Extrasolar Planets), 4th year (Binary Stars and Accretion Disks, Cosmology), and 5th year (Astronomical Data Analysis).

Research outputs

  1. The Sloan Digital Sky Survey Reverberation Mapping Project DOI
    Z. S. Hemler, C. J. Grier, W. N. Brandt, P. B. Hall, Keith Horne, Yue Shen, J. R. Trump, D. P. Schneider, M. Vivek, Dmitry Bizyaev et al., Astrophysical Journal, 872, 1 (2019)
  2. OGLE-2014-BLG-1186 DOI
    M. Dominik, E. Bachelet, V. Bozza, R. A. Street, C. Han, M. Hundertmark, A. Udalski, D. M. Bramich, K. A. Alsubai, S. Calchi Novati et al., Monthly Notices of the Royal Astronomical Society, 484, 4 , p. 5608-5632 (2019)
  3. First assessment of the binary lens OGLE-2015-BLG-0232 DOI
    E. Bachelet, V. Bozza, C. Han, A. Udalski, I. A. Bond, J.-P. Beaulieu, R. A. Street, J.-I Kim, D. M. Bramich, A. Cassan et al., Astrophysical Journal, 870, 1 (2018)
  4. A large ground-based observing campaign of the disintegrating planet K2-22b DOI
    Knicole D. Colón, George Zhou, Avi Shporer, Karen A. Collins, Allyson Bieryla, Néstor Espinoza, Felipe Murgas, Petchara Pattarakijwanich, Supachai Awiphan, James D. Armstrong et al., Astronomical Journal, 156, 5 (2018)
  5. Velocity-resolved reverberation mapping of five bright Seyfert 1 galaxies DOI
    G. De Rosa, M. M. Fausnaugh, C. J. Grier, B. M. Peterson, K. D. Denney, Keith Horne, M. C. Bentz, S. Ciroi, E. Dalla Bontà, M. D. Joner et al., Astrophysical Journal, 866, 2 (2018)
  6. Supermassive black holes with high accretion rates in active galactic nuclei. VII. Reconstruction of velocity-delay maps by maximum entropy method DOI
    Ming Xiao, Pu Du, Keith D. Horne, Chen Hu, Yan-Rong Li, Ying-Ke Huang, Kai-Xing Lu, Jie Qiu, Fang Wang, Jin-Ming Bai et al., Astrophysical Journal, 864, 2 (2018)
  7. The Sloan Digital Sky Survey Reverberation Mapping Project DOI
    Minghao Yue, Linhua Jiang, Yue Shen, Patrick B. Hall, Zhefu Yu, Donald P. Schneider, Luis C. Ho, Keith Horne, Patrick Petitjean and Jonathan R. Trump, Astrophysical Journal, 863, 1 (2018)
  8. Accretion disk reverberation with Hubble Space Telescope observations of NGC 4593 DOI
    Edward M. Cackett, Chia-Ying Chiang, Ian McHardy, Rick Edelson, Michael R. Goad, Keith Horne and Kirk T. Korista, Astrophysical Journal, 857, 1 (2018)
  9. Stability of the broad-line region geometry and dynamics in Arp 151 over seven years DOI
    A. Pancoast, A. J. Barth, K. Horne, T. Treu, B. J. Brewer, V. N. Bennert, G. Canalizo, E. L. Gates, W. Li, M. A. Malkan et al., Astrophysical Journal, 856, 2 (2018)
  10. The first planetary microlensing event with two microlensed source stars DOI
    D. P. Bennett, A. Udalski, C. Han, I. A. Bond, J. -P. Beaulieu, J. Skowron, B. S. Gaudi, N. Koshimoto, F. Abe, Y. Asakura et al., Astronomical Journal, 155, 3 (2018)
Last updated: 17 Mar 2016 at 20:48