Dr. Brendon Lovett

Position:
Reader
Research Theme:
Condensed Matter and Photonics
Research Groups:
Hard Condensed Matter, Photonics
Institution:
St. Andrews
Email address:
bwl4@st-andrews.ac.uk
Telephone number:
+44 (0)1334 463107
Address:
School of Physics & Astronomy, Physical Science Building, North Haugh, St Andrews, KY16 9SS, United Kingdom

Research interests

Brendon Lovett is a Royal Society University Research Fellow and Proleptic Reader in the School of Physics and Astronomy at the University of St Andrews.

Dr Lovett is a theoretical physicist whose aim is to understand the quantum properties of nanomaterials. His work has applications ranging from quantum information processing to solar energy harvesting.

He works closely with experimental groups on the design and realization of architectures quantum computing, quantum metrology and quantum memory. His work is generally concerned with solid state or molecular systems, examples including semiconductor quantum dots, fullerenes and defects in crystals. He is particularly interested in optical control of electronic states in these materials, and co-wrote a 2010 book on the topic entitled “Introduction to Optical Quantum Information Processing”.

Energy harvesting in photovoltaic cells relies on the creation and transport of electronic excitations in molecules or semiconductors. Lovett’s group uses quantum theory to understand how this process can be understood and optimized for efficient conversion of sunlight into electrical energy.

Nearly all this work relies on understanding quantum systems that interact with an environment, whose properties can only be described incompletely. Lovett and his group therefore use and develop the theory of open quantum systems, and exploit it for practical problems.

The research is funded through grants from the ESPRC, Leverhulme Trust and DARPA, held jointly with groups from the Universities of Oxford, Cambridge, Southampton, Heriot-Watt University, UCL and the University of Princeton.

Research outputs

  1. Coherence protection in coupled quantum systems DOI
    Helen Mary Cammack, Peter George Kirton, Thomas Stace, Paul Eastham, Jonathan Mark James Keeling and Brendon William Lovett, Physical Review. A, Atomic, molecular, and optical physics, 97, 2 (2018)
  2. Quantum-enhanced capture of photons using optical ratchet states DOI
    Kieran Higgins, Brendon William Lovett and Erik Gauger, Journal of Physical Chemistry C, 121, 38 , p. 20714-20719 (2017)
  3. Efficient real-time path integrals for non-Markovian spin-boson models DOI
    Aidan Strathearn, Peter George Kirton and Brendon William Lovett, New Journal of Physics, 19 (2017)
  4. Microwave irradiation and quasiparticles in a superconducting double dot DOI
    N. J. Lambert, A. A. Esmail, F. A. Pollock, M. Edwards, B. W. Lovett and A. J. Ferguson, Physical Review. B, Condensed matter and materials physics, 95, 23 (2017)
  5. Sub-Doppler laser cooling of 40K with Raman gray molasses on the D2 line DOI
    Graham David Bruce, Elmar Haller, Bruno Peaudecerf, Dylan A Cotta, Manuel Andia, Saijun Wu, Matthew Y H Johnson, Brendon William Lovett and Stefan Kuhr, Journal of Physics B: Atomic, Molecular and Optical Physics, 50, 9 (2017)
  6. Quantum gates with donors in germanium DOI
    Giuseppe Pica and Brendon William Lovett, Physical Review. B, Condensed matter and materials physics, 94, 20 (2016)
  7. Photocell optimization using dark state protection DOI
    Amir Fruchtman, Rafael Gómez-Bombarelli, Brendon W. Lovett and Erik M. Gauger, Physical Review Letters, 117, 20 (2016)
  8. Designing spin-channel geometries for entanglement distribution DOI
    Elliott Kendrick Levi, Peter George Kirton and Brendon William Lovett, Physical Review. A, Atomic, molecular, and optical physics, 94, 3 (2016)
  9. Quantum capacitance and charge sensing of a superconducting double dot DOI
    Nicholas J. Lambert, Adam A. Esmail, Megan Edwards, Felix A. Pollock, Brendon William Lovett and Andrew Ferguson, Applied Physics Letters, 109, 11 (2016)
  10. Bath induced coherence and the secular approximation DOI
    P. R. Eastham, P. Kirton, H. M. Cammack, B. W. Lovett and J. Keeling, Physical Review. A, Atomic, molecular, and optical physics, 94, 1 (2016)
Last updated: 17 Mar 2016 at 20:48