Prof. Andrew Mackenzie

- Position:
-
Professor
- Research Theme:
- Condensed Matter and Photonics
- Research Group:
- Hard Condensed Matter
- Institution:
- St. Andrews
- Email address:
- apm9@st-andrews.ac.uk
- Website:
- http://www.st-andrews.ac.uk/physics/PHP_Global/Staff_Info.php?id=67
- Address:
- School of Physics & Astronomy, Physical Science Building, North Haugh, St Andrews, KY16 9SS, United Kingdom
Research interests
The physics of correlated electrons, magnetism and superconductivity .
My research interests concern the behaviour of solids in which the independent electron approximation breaks down, and the motion of any one charge carrier is said to be strongly correlated with that of all the others. A huge range of subtle many-body quantum states result from such a situation, the understanding of which represents one of the major challenges of modern physics. My favoured approach is through study of the low temperature properties of extremely pure oxide metals, magnets and superconductors. From late 2013 my main research job will be as Director, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Dresden, Germany, but I will retain a partial Chair and active research interests in St Andrews, supervising PhD students who will do joint St Andrews / Max Planck PhDs.
Research outputs
- Itinerant ferromagnetism of the Pd-terminated polar surface of PdCoO2 DOI, Proceedings of the National Academy of Sciences of the United States of America, 115, 51 , p. 12956-12960 (2018)
- Unconventional magneto-transport in ultrapure PdCoO2 and PtCoO2 DOI, npj Quantum Materials, 3 (2018)
- Uniaxial pressure control of competing orders in a high-temperature superconductor DOI, Science, 362, 6418 , p. 1040-1044 (2018)
- Low temperature thermodynamic investigation of the phase diagram of Sr3Ru2O7 DOI, Physical Review. B, Condensed matter and materials physics, 97, 11 (2018)
- Application of SQUIDs to low temperature and high magnetic field measurements—ultra low noise torque magnetometry DOI, Review of Scientific Instruments, 89, 2 (2018)
- Maximal Rashba-like spin splitting via kinetic energy-coupled inversion symmetry breaking DOI, Nature, 549, 7673 , p. 492-496 (2017)
- Quasi two-dimensional Fermi surface topography of the delafossite PdRhO2 DOI, Physical Review. B, Condensed matter and materials physics, 96, 7 (2017)
- Single crystal growth, structure and electronic properties of metallic delafossite PdRhO2 DOI, Crystal Growth & Design, 17, 8 , p. 4144-4150 (2017)
- Even odder after twenty-three years DOI, npj Quantum Materials, 2 (2017)
- Emergent Weyl fermion excitations in TaP explored by 181Ta quadrupole resonance DOI, Physical Review Letters, 118, 23 (2017)